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ABSTRACT: The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), are
among the deadliest viruses that cause disease in humans, with reported case fatality rates
of up to 90% in some outbreaks. The high virulence of EBOV and MARV is largely
attributed to the ability of these viruses to interfere with the host immune response.
Currently, there are no approved vaccines or postexposure therapeutics, and treatment
options for patients infected with EBOV are limited to supportive care. In this review, we
discuss mechanisms of EBOV pathogenesis and its ability to subvert host immunity as well
as several vaccines and therapeutics with respect to their evaluation in small animal models,
nonhuman primates, and human clinical trials.
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Ebola virus (EBOV) is a filamentous enveloped virus
containing a negative strand RNA genome 19 kb in length

that encodes for a nucleoprotein (NP), glycoprotein (GP),
RNA-dependent RNA polymerase (L), and four structural
proteins termed VP24, VP30, VP35, and VP40. Viral replication
is carried out by NP, VP35, and L; the active polymerase
complex is composed of VP35 (a polymerase cofactor) and L
(polymerase) while NP drives RNA encapsidation. VP30 is a
transcriptional activator and is also involved in nucleocapsid
formation and assembly.1 VP24 is a matrix protein that
contributes to nucleocapsid formation whereas matrix protein
VP40 facilitates the budding of progeny virion from infected
cells.1b,2 Glycoprotein (GP) covers the surface of the virion and
is the sole host attachment factor for EBOV.3 Moreover, EBOV
expresses two soluble forms of GP, sGP, and ssGP through
RNA editing.4

Infection with EBOV results in severe viral hemorrhagic fever
with fatality rates that can reach 90% in humans depending on
the species. Infection with Zaire Ebola virus (EBOV), Sudan
Ebola virus (SUDV), and Bundibugyo Ebola virus (BDBV) is
associated with 70−90, 50, and 40% mortality rates,
respectively.5 In contrast, infection with either Tai Forest
Ebola virus (TAFV) or Reston Ebola virus (RESTV) has not
been associated with human fatalities.5 EBOV is transmitted by
direct contact with infected bodily fluid. The incubation period
ranges from 2 to 21 days with an average incubation period of
5−7 days. Early symptoms are general and nonspecific
including fever, general malaise, and myalgia. Following early
symptoms, cases can show maculo-papulary rash, petichae,
conjunctival hemorrhage, melena, hematemesis, shock, and
encephalopathy. During the terminal stage of disease, there is
an increase in vascular permeability, massive tissue injury,

dysregulation of the coagulation cascade, and hemorrhage.
Multiorgan failure and shock are usually the main causes of
death.6

Previous EBOV outbreaks have occurred mostly in remote
regions of central Africa including the Democratic Republic of
Congo, Sudan, Gabon, and Uganda. However, in March 2014,
the World Health Organization (WHO) reported an outbreak
of Ebola virus disease originating in the Guinean capital,
Conakry, marking the first large urban setting for EBOV
transmission. This has led to the first known epidemic in West
Africa and is the largest and longest outbreak since the virus
was first discovered in 1976.7 Genome sequencing of the
Guinea strain shows 97% identity to EBOV.8 Sequencing
studies of 99 EBOV genomes from 78 patients in Sierra Leone
reveal an accumulation of inter- and intrahost genetic variation.
Patterns of viral transmission suggest that this variant diverged
from central African lineages around 2004.9 As of March 8,
2015, the CDC reports a total 24 247 confirmed, probable, and
suspected cases of EBOV disease and 9961 reported deaths in 8
countries (Guinea, Liberia, Sierra Leone, Mali, Nigeria, Senegal,
Spain, and United States). Currently, there are no FDA-
approved treatment strategies. Supportive care, consisting of
oral fluid rehydration and nutritional supplementation, is the
mainstay in treating Ebola hemorrhagic fever (EHF). The high
mortality rate has caused concern to public health officials
worldwide, prompting a sense of urgency to accelerate clinical
trials to identify effective vaccines and postexposure therapeu-
tics.
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Nonhuman primates, particularly cynomolgus macaques and
rhesus macaques, are the gold standard animal models used in
filovirus study because they are susceptible to infection by the
same strains that cause disease in humans and exhibit a strong
similarity of viral hemorrhagic fever to humans.10 Small animal
models, such as inbred mice and guinea pigs, have also been
used; however, these animal models require the use of adapted
EBOV strains and do not exhibit the characteristic hemorrhagic
manifestations seen with human and nonhuman primate
infection.11 In a recent study using Collaborative Cross mice,
animals exhibited a spectrum of disease outcomes following
infection with mouse-adapted EBOV (MA-EBOV), including
hemorrhagic fever.12 However, MA-EBOV has diminished
virulence in nonhuman primates. Of three rhesus macaques
injected with a large challenge dose of 5000 pfu of MA-EBOV,
two showed mild illness and survived infection.13 A single
amino acid mutation in both NP and VP24 are the
determinants of the virulence of MA-EBOV in mice.14

Although MA-EBOV infection in mice correlated with the
evasion of IFN-induced responses,14 the determinants for the
virulence of EBOV may differ between mouse and primate
models. The purpose of this review is to summarize our current
understanding of the pathogenesis of EBOV and discuss the

various vaccine platforms and therapeutics currently being
investigated.

■ DYSREGULATION OF INNATE IMMUNITY BY EBOV
INFECTION

Although EBOV targets a wide range of cell lineages, in vivo
studies in nonhuman primates using immunohistochemistry
and in situ hybridization suggest that EBOV replicates
preferentially in monocytes, macrophages, and dendritic
cells.10b,15 The infection of monocytes and macrophages
triggers the robust expression of inflammatory mediators16

(Figure 1). Indeed, several studies have shown that fatal
infections were associated with the uncontrolled secretion of
proinflammatory cytokines, chemokines, and growth factors
such as IL-1β, IL-6, IL-8, IL-10, MCP-1, MIP-1α, MIP-1β, and
TNFα as well as nitric oxide and reactive oxygen species, which,
at the time of death, can reach 5 to 1000 times the levels
detected in survivors and healthy individuals.17 In contrast,
survivors show a transient and moderate upregulation in levels
of IL-1β, IL-6, TNFα, MIP1α, and MIP1β early in the
disease.17a These studies suggest that protection from fatal
EBOV infection may depend on an early yet regulated
inflammatory response.

Figure 1. Dysregulation of the immune system by the Ebola virus. Monocytes, macrophages, and dendritic cells are the preferred sites of filovirus
replication. Infection of monocytes and macrophages triggers the robust expression of inflammatory mediators. Inflammatory mediators, reactive
oxygen species, and nitric oxide can induce apoptosis leading to lymphocyte death. The infection of dendritic cells impairs their maturation and
suppresses type I (IFN) responses, thereby preventing T cell activation. Production of EBOV-soluble glycoprotein (sGP) usurps GP-specific
antibodies.
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Ebola virus infection is also characterized by a suppressed
type I interferon (IFN) response, which is an integral part of
the innate immune response against viral infections. This
suppression is mediated by VP24, which prevents the nuclear
transport of tyrosine phosphorylated STAT1 (pSTAT1), a key
downstream outcome of IFN signaling, thereby preventing
IFN-induced gene expression.18 VP24 binds the C-terminus of
karyopherin α proteins (karyopherin α1, α5, α6), which
normally transport pSTAT1 through the nuclear pore,
therefore competing with pSTAT1 to bind the nuclear
transporter.19 In addition to VP24, VP35 was also found to
block the activation of transcription factor IFN regulatory factor
3 (IRF-3), thus decreasing IFN production.20 VP35 interacts
with SUMO E2 enzyme Ubc9 and E3 ligase PIAS1, which in
turn leads to increased SUMOylation and degradation of
transcription factor IRF-7.21 VP35 can also inhibit retinoic acid-
inducible gene-I (RIG-I) helicase signaling by binding to
dsRNA22 or binding to PKR activating protein (PACT), which
activates RIG-I.23 Moreover, VP35 can decrease IFN
production by impairing IKKε and TBK-1 kinase function.24

Interference with RIG-I signaling can also inhibit the
upregulation of a number of costimulatory molecules on
dendritic cells (CD40, CD80, CD86, and MHC class II)
needed to activate T cells.25 Additionally, in vitro studies have
shown that EBOV infection inhibits dendritic cells maturation
into mobile, antigen-presenting cells and impairs their ability to
stimulate antigen-specific T cell responses26 (Figure 1).

■ DYSREGULATION OF LYMPHOCYTE FUNCTION BY
EBOV INFECTION

One major consequence of EBOV infection is severe
lymphopenia.10a EBOV infection leads to the loss of both
human CD4+ and CD8+ T cells after 4 days of in vitro
culture.27 Similarly, EBOV infection resulted in a loss of
peripheral CD4+ and CD8+ T cells in both mouse models at 2
to 3 dpi28 and in nonhuman primates at 4 dpi.29 A significant
loss of circulating natural killer (NK) cells was also described in
mice28 and in cynomolgus macaques.10b,29 B cell loss is more
controversial, with some studies reporting the loss of B
lymphocytes in mice28 and macaques15 and other studies
reporting no changes in B cell counts in nonhuman
primates.29,30 Flow cytometric analysis of peripheral blood
mononuclear cells (PBMCs) from humans and cynomolgus
macaques infected with EBOV revealed an increase in the
percentage of CD4+ and CD8+ T cells expressing cell death
receptor Fas (CD95), suggesting that apoptosis is the primary
mechanism of lymphocyte death.17f,29 Transmission electron
microscopy and TUNEL staining confirmed lymphopenia in
vivo and in vitro occurred by apoptosis.15 Increased plasma
levels of apoptosis mediators such as soluble Fas (sFas) and 41/
7 nuclear matrix protein, upregulation of Fas and FasL mRNA
in PBMCs, and dramatic DNA fragmentation in leukocytes
were detected during the terminal stage of human EBOV
infection.31 Furthermore, PBMCs from survivors showed an
upregulation of antiapoptotic Bcl-2 mRNA whereas fatalities
showed a significant decrease in Bcl-2 mRNA as well as a
decrease in CD3, CD8, and TCR-Vβ mRNA.15,31b

The fact that EBOV does not replicate within lymphocytes
during infection suggests that lymphocyte apoptosis is an
indirect result of viral replication.15,31a Some of the
proinflammatory mediators released by EBOV-infected mono-
cytes such as TNFα, reactive oxygen species, and nitric oxide
have been shown to induce apoptosis32 (Figure 1).

Furthermore, immunohistochemistry, flow cytometry, and
RNA analysis showed a high expression of TNF-related
apoptosis inducing ligand (TRAIL) in 90% of EBOV-infected
adherent human monocytes/macrophages.17c In addition to
lymphopenia, EBOV infection interferes with T cell activation
as evident by decreased expression of activation marker
CD44.26,29 The absence of EBOV-specific T cell responses is
consistent with the lack of T cell cytokines (IL-2, IL-4, IL-5, IL-
12, and IFNγ) in the plasma of EBOV-infected patients.17f,33

EBOV also subverts the host humoral immune response, as
fatalities are associated with a lack of EBOV-specific IgG
antibodies.31b The loss of CD4+ T cells, which are required for
isotype class switching, may explain the lack of Ebola-specific
IgM and IgG antibodies observed in patients who succumb to
infection. In contrast, asymptomatic EBOV-infected patients
developed IgM responses between 10 and 18 days and IgG
responses between 17 and 25 days specific to GP, NP, and
VP40.34 EBOV also subverts humoral responses through the
production of sGP,30 which sequesters GP-specific antibodies
needed to control viral replication35 (Figure 1). The
importance of antibodies in protection against EBOV infection
is highlighted by passive immunization studies. During one of
the EBOV outbreaks in the Democratic Republic of Congo, 7/
8 patients treated with blood transfusions from five
convalescent patients who generated EBOV-specific IgG
antibodies survived.36 Similarly, 100% of naiv̈e mice were
protected against infection when treated with serum from
vaccinated mice that survived challenge with mouse-adapted
EBOV.37

■ VACCINES AGAINST EBOLA
Several vaccine platforms against EBOV have been developed.
Replication-deficient vaccines include DNA-based vaccines,
virus-like particles (VLPs), and recombinant adenovirus vectors
(rAd). Replication competent constructs include recombinant
human parainfluenza virus 3 (rHPIV3), recombinant vesicular
stomatitis virus (rVSV), and more recently recombinant rabies
virus (RABV) and recombinant cytomegalovirus (CMV).38

Two promising vaccine candidates, rAd and rVSV vectors
expressing GP (Table 1), have entered clinical trials.

The vaccination of cynomolgus macaques with the
replication-deficient rAd serotype 5 vector expressing EBOV-
GP (rAd5-EBOVGP) resulted in the generation of EBOV-GP-
specific antibodies and GP-specific CD8+ T cell responses
within 3 weeks of immunization and protected 100% of the
animals against challenge.39 Passive transfer of EBOV-specific
IgG purified from nonhuman primates vaccinated with DNA

Table 1. Vaccines against Ebola Virus

vaccine rAd5/ChAd3 rVSV/ΔG/GP EBOV

replication
potential

replication deficient replication competent

mechanism of
protection

CD8+ T cell mediated antibody mediated

booster
requirement

modified vaccinia Ankara

durability 10 months with booster vaccination
in nonhuman primates

12−18 months in
rodents

14 months in
nonhuman primates
(MARV)

clinical trial phase II/III phase II/III
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and rAd5 vectors expressing EBOV GP to naiv̈e animals
protected only 25% of naiv̈e animals 6 or 16 h before EBOV
challenge, whereas the depletion of CD8+ T cells in vaccinated
animals 4 days before challenge resulted in 4/5 nonhuman
primates succumbing to infection, suggesting that CD8+ T cells
play a more important role in protection compared to
antibodies in this vaccine platform.40 Despite these promising
results, humans have preexisting immunity against Ad5, which
may interfere with the efficacy of the rAd5-EBOVGP vaccine.38

On the other hand, adenoviruses isolated from chimpanzees
(ChAds) provide better vaccine vectors because of their low
seroprevalence in humans. The immunization of cynomolgus
macaques with a single inoculation of recombinant ChAd3
expressing EBOV GP (rChAd3-EBOVGP) resulted in com-
plete protection when challenged with EBOV 5 weeks after
vaccination but conferred only 50% protection when the
animals were challenged 10 months after immunization. To
improve long-term efficacy of this vaccine platform, a booster
vaccination using recombinant-modified vaccinia Ankara
expressing EBOV-GP was added 8 weeks after the rChAd3-
EBOVGP vaccination, which resulted in complete protection at
10 months.41 Phase I clinical trials of rChAd3 began in
September 2014 by the National Institute of Allergy and
Infectious Diseases (NIAID) to evaluate the vaccine’s safety
and immunogenicity. Twenty adults were vaccinated with
either 2 × 1010 or 2 × 1011 particles. Reactivity to rChAd3 was
dose-dependent as two participants developed fever 1 day after
vaccination with the 2 × 1011 dose. Similarly, immunogenicity
was also dose-dependent, with higher GP-specific antibodies
and T-cell responses detected in the group that received the 2
× 1011 dose 4 weeks after vaccination.42 In parallel, the NIH
partnered with the United Kingdom-based international
consortium to test the safety and efficacy of rChAd3, at a
dose of either 2 × 1010 or 2 × 1011, among 60 volunteers at the
University of Oxford in England and 40 volunteers in Mali and
has observed similar results with regard to safety and immune
response.43 The vaccine will enter a phase II/III trial called
Partnership for Research on Ebola Vaccines in Liberia
(PREVAIL). This study will enroll 27 000 healthy men and
women to investigate rChAd3 and rVSV/ΔG/GP and is
estimated to be completed in June 2016.43

Vesicular stomatitis virus (VSV) is a nonsegmented,
negative-stranded RNA virus and a member of the Rhabdovir-
idae family. Recombinant VSV, in which the VSV G protein is
replaced with EBOV GP (rVSV/ΔG/GP EBOV), confers
100% protection in nonhuman primates and mice challenged
28 days after immunization with EBOV and mouse-adapted
EBOV, respectively.45 Antibodies play a critical role in rVSV/
ΔG/GP-mediated protection against EBOV. In a nonhuman
primate study, only the animals depleted of CD4+ T cells
during vaccination, which lacked GP-specific antibodies,
succumbed to infection, suggesting that antibodies were
required for protection.46 Because rVSV/ΔG/GP is a live-
attenuated virus, several studies have investigated its safety. No
toxicity was observed in over 80 nonhuman primates given
rVSV/ΔG/GP MARV or rVSV/ΔG/GP EBOV vaccines.45a,47

Moreover, this vaccine was safe in a mouse model of severe
combined immunodeficiency (NOD-SCID) and in simian
human immunodeficiency (SHIV)-infected rhesus maca-
ques.45b,47b Administration of a single dose of rVSV/ΔG/GP
confers 100% protection against EBOV challenge for up to 6
months in macaques and 18 months in mice and guinea pigs,
and this protection correlates with GP-specific IgG titers.48,49

This vaccine platform has also provided protection in macaques
against MARV for up to 14 months after vaccination, further
demonstrating the durability of VSV-based vaccines against
filoviruses.50 Administration of a mixture vaccine containing
rVSV/ΔG/GP from MARV, EBOV, and SUDV to cynomolgus
macaques resulted in their survival following challenge with
MARV, EBOV, SUDV, and TAFV, demonstrating that a single
injection of a multivalent vaccine is as efficacious as the
administration of a single specificity vaccine.51 Finally, rVSV/
ΔG/GP has also been shown to be effective postexposure.
Administration of rVSV/ΔG expressing EBOV or SUDV GP to
rhesus macaques 20−30 min after challenge resulted in 50 and
100% protection, respectively.52 In March 2009 in Germany, a
virologist working in a biosafety level 4 sustained a needle stick
injury with a syringe that contained EBOV mixed with Freund’s
adjuvant. A single dose of 5 × 107 pfu rVSV/ΔG/GP EBOV
was administered to her 48 h after the injury. Following
postexposure vaccination, the virologist developed a fever 12 h
later in addition to rVSV viremia detected via PCR for 2 days
but remained healthy during the 3 week observation period.53

During the 2014 outbreak, rVSV/ΔG/GP EBOV was used as
an emergency postexposure vaccination and was administered
43 h after a physician experienced a needle stick injury while
working in an Ebola treatment unit in Sierra Leone.54 Although
it is unknown if rVSV/ΔG/GP EBOV was effective as a
postexposure vaccination, the patient had a self-limited febrile
syndrome and cytokine- and Ebola glycoprotein-specific
adaptive immune response after vaccination.54 The NIH and
WHO have carried out phase I clinical trials to test the safety
and efficacy of rVSV/ΔG/GP EBOV, with a dose ranging from
3 × 106 to 1 × 108 pfu, in various locations in the U.S., Europe,
and Africa. Although safety data from phase I studies have not
yet been published, there is sufficient safety and efficacy
information to push the vaccine forward into the PREVAIL
phase II/III trial.43 The CDC in collaboration with Sierra
Leone has launched another phase II/III trial called Sierra
Leone Trial to Introduce a Vaccine against Ebola (STRIVE).
The study will test a dose of 2 × 107 pfu of rVSV/ΔG/GP on
6000 participants.55

■ THERAPEUTICS AGAINST EBOLA
Various therapeutic candidates that either directly inhibit viral
replication, modulate clinical symptoms, or prolong survival
time have been evaluated either as sole or adjunctive
postexposure therapies in rodent and nonhuman primates. A
complete list of Ebola therapeutics is summarized in Table 2.
Two anticoagulant recombinant proteins, recombinant nem-
atode anticoagulant protein c2 (rNAPc2) and recombinant
human activated protein C (rhAPC), have been evaluated in
preventing increased coagulation during filovirus infection.59

However, both anticoagulants provided only partial protection
in nonhuman primates challenged with EBOV.59 Adminis-
tration of rNAPc2 to six rhesus macaques 10 min after EBOV
challenge prolonged the survival time from a mean time to
death of 8.3 days to 11.7 days with a 33% survival rate.59a

Treatment with rhAPC in 11 rhesus macaques starting 30−60
min after EBOV challenge and daily for 7 days increased the
mean time to death from 8.3 to 12.6 days with 2 of 11 rhesus
macaques surviving.59b Although rNAPc2 has gone through
phase II trials for use in the prevention of venous
thromboembolism after orthopedic surgery60 and coronary
revascularization,61 it has not been assessed in clinical trials for
the treatment of EBOV exposure. Additionally, rhAPC has not
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been evaluated in clinical trials for use against EBOV infection.
Treatment with interferon beta (IFNβ) for five EBOV-infected
rhesus macaques 18 h and 1, 3, 5, 7, and 9 days postinfection
did not alter mortality but significantly increased the mean time
to death from 8.3 to 13.8 days62 and may be used as an
adjunctive therapeutic.
Antivirals that have been evaluated as therapeutics against

EBOV include nucleotide analogs (Favipiravir and BCX4430),
Brincidofovir, and antisense therapeutics (phosphorodiamidate
morpholino oligomers (PMOs) and siRNAs) and are
summarized in Table 2. Favipiravir (T-705) is an oral
nucleotide analog that, when converted into its active
metabolite ribofuranosyl triphosphate, inhibits the viral RNA-
dependent RNA polymerase by directly competing with GTP.
Currently licensed for influenza outbreaks, Favipiravir (T-705)
was shown to suppress EBOV replication by 4 log10 units in
Vero E6 cells 1 h after infection.63 In a mouse model in which
mice lack the type I IFNα/β receptor and are susceptible to
wild-type EBOV, treatment with Favipiravir 6 h after EBOV
challenge resulted in complete survival of all five mice.63 To
date, Favipiravir has been used to treat one French nurse
infected with Ebola who recovered.64 Favipiravir entered phase
II evaluations in December 2014 in Guinea and is sponsored by
Institut National de la Sante Et de la Recherche Medicale,
France. Nucleoside analogue inhibitor BCX4430 is an
adenosine analog with a C-nucleoside instead of the N-
glycoside and a 1,4 imino group instead of the 1,4 oxygen.
Once metabolized to the active triphosphate nucleotide form
and after pyrophosphate cleavage, it is incorporated into the
nascent viral RNA chain and terminates transcription. It is not
incorporated into mammalian RNA or DNA. Administration of
BCX4430 in cynomolgus macaque as late as 48 h following
infection with Marburg virus resulted in 100% protection.66

BioCryst Pharmaceuticals and NIAID have initiated a phase I
clinical trial of BCX4430 in the United Kingdom.67

PMOs are synthetic antisense molecules that are able to
target mRNA in a sequence-specific fashion and suppress
translation through steric hindrance. AVI-6002 consists of
PMO AVI-7537, which targets VP24, and AVI-7539, which
targets VP35. AVI-6003 consists of PMO AVI-7287, which
targets MARV VP24, and AVI-7288, which targets MARV NP.
AVI-6002 protected 62.5% of rhesus monkeys against EBOV
infection when given 30−60 min postinfection and daily for 14
days. AVI-6003 protected 100% of cynomolgus macaques from
MARV infection when given 30−60 min postinfection and
daily for 14 days.70 A follow-up study discovered AVI-7537
alone protected 75% (6/8) cynomolgus macaques against
EBOV when administered 1 h ± 30 min after challenge and
daily for 14 days whereas treatment solely with AVI-7539 did
not result in any survival past 10 days postinfection71 Results
from a phase I clinical trial evaluating the safety and
pharmacokinetic profiles of AVI-6002 and AVI-6003 in two
groups of 30 individuals revealed that both AVI-6002 and AVI-
6003 were safe and well tolerated with doses ranging from
0.005 to 4.5 mg/kg per component.72 Small-interfering RNA
(siRNA) can inhibit the translation of mRNA and has been
shown to specifically downregulate MARV transcription of
nucleocapsid protein in Vero E6 cells, significantly decreasing
viral protein production and viral release.73 The design of stable
nucleic acid−lipid particles (SNALP) to efficiently deliver
siRNAs in vivo to target cells facilitated therapeutic evaluation.
SNALP-encapsulated siRNAs targeting the EBOV polymerase
L gene completely protected five guinea pigs from viremia andT
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death when administered in a dose of 0.75 mg/kg 1 h after
challenge and daily on days 1−6 postinfection.74 Treatment
with a SNALP carrying siRNAs targeting EBOV L polymerase,
VP24, and VP35, called TKM-Ebola, resulted in the survival of
2/3 macaques that were given a 2 mg/kg dose after 30 min and
on days 1, 3, and 5 after EBOV challenge and 4/4 macaques
that were given a 2 mg/kg dose after 30 min and on days 1, 2,
3, 4, 5, and 6 postchallenge.75 However, phase I trials of TKM-
Ebola in early 2014 were halted after elevated cytokine levels
were detected in healthy participants. In October 2014, the
FDA expanded access to TKM-Ebola on an emergency basis.76

Brincidofovir (CMX001) is a lipid conjugate of cidofovir that
can be converted intracellularly into cidofovir diphosphate,
which has been shown to inhibit DNA polymerase. Although
brincidofovir is in clinical trials for diseases caused by DNA
viruses, in vitro studies carried out at the CDC and NIH
revealed that brincidofovir is active against the Ebola virus.68

While the mechanism by which brincidofovir acts against Ebola
is unknown, brincidofovir has been used to treat two patients
infected with Ebola in the United States (one survived and one
died). Although Chimerix initiated a phase II clinical trial in
October 2014,69 they withdrew the study in January 2015.
Given the large body of both experimental and clinical data

supporting the role of antibodies in protection against EBOV
infections, several monoclonal treatment modalities were
tested. Human monoclonal antibody (mAb) KZ52, which
targeted one epitope in EBOV-GP, was able to protect guinea
pigs77 but failed to protect rhesus macaques against lethal
challenge with EBOV strain Kikwit when administered 1 day
before challenge and 4 days after challenge.78 On the other
hand, the administration of a combination of two human−
mouse chimeric neutralizing mAbs to three nonhuman primates
1 day prior to as well as 1 and 3 days after lethal EBOV
challenge resulted in the protection of 1/3 nonhuman primates
and a prolonged time to death in a second animal.79 Passive
transfer of polyclonal IgG purified from vaccinated NHPs that
survived challenge with either EBOV or MARV as late as 48 h
after virus challenge protected naiv̈e NHPs against both MARV
and EBOV lethal challenge.80 Together with the previously
failed trials of monoclonal antibodies, these observations
strongly suggested the need to target multiple epitopes on
GP in order to achieve protection against EBOV.
To develop a multispecificity antibody cocktail, several

EBOV GP-specific mAbs generated using the rVSV/ΔG/GP
EBOV vaccine were evaluated in immunocompetent mice and
guinea pigs individually or as pools of 3 to 4 mAbs. In contrast
to individually administered mAbs, which were ineffective,
pools of 3 mAbs were found to give complete protection in
guinea pigs when administered 2 days postinfection.81 These
studies paved the way for the development of two cocktails of
monoclonal antibodies (either chimeric (c) or human (h))
termed MB-003 (clones c13C6, h13F6, and c6D8) and ZMab
(clones m1H3, m2G4, and m4G7) that mediated the complete
protection of nonhuman primates when administered 1−3 days
post-EBOV challenge.82 Further refinement of these cocktails
led to the generation of ZMapp containing monoclonal
antibodies with the highest efficacy (c13C6, c2G4, and
c4G7). This combination is a highly effective postexposure
therapeutic that can protect nonhuman primates even when
administered 5 days postexposure to Ebola to symptomatic
animals83 (Table 2). ZMapp has been used to treat seven
patients infected with EBOV, resulting in five patients
surviving.84 In February 2015, the NIAID initiated phase I

clinical trial evaluations of ZMapp in Liberia and the United
States. The study will be conducted on 200 patients positive for
Ebola virus infection who will be randomly assigned to one of
two groups: the control group will receive the current standard
of care, and the second group will receive three infusions of
ZMapp administered 3 days apart.85

■ CONCLUSIONS AND FUTURE OUTLOOK
EBOV is one of the most feared pathogens due to its high
lethality rates. Subversion of the innate immune response by
Ebola virus occurs at various levels from suppression of the IFN
response to the generation of a robust cytokine storm to the
inhibition of dendritic cell maturation. Dysregulation of innate
immune pathways together with the characteristic lymphopenia
of Ebola prevents the development of cellular and humoral
responses as evident by the lack of EBOV-specific T and B cell
responses and the sequestration of neutralizing antibodies. The
current Ebola outbreak in West Africa has spurred a public
health emergency and highlighted the need for licensed
vaccines and postexposure therapeutics. With the substantial
amount of data pointing to the critical role of antibody-
mediated protection against Ebola, it is imperative that research
efforts focus on evaluating the safety and efficacy of monoclonal
antibody cocktails. Highly promising antibody cocktail ZMapp
is grown in tobacco plants, which is thought to take less time
and money to produce than in rodents. However, clinical
evaluations of ZMapp were delayed until early of 2015 due to
the slow production of ZMapp. The production of one course
of treatment (14 g) requires 78 tobacco plants to produce.86

Consequently, efforts must be allocated to developing novel
methods to increase yields of the monoclonal antibody cocktail.
Although using more traditional methods of generating
monoclonal antibodies in rodents may be a slower route than
tobacco plant production, this established technique might
enable increased production in order to ensure that enough of
the treatment is available for further clinical evaluations and
future outbreaks.
In addition to monoclonal cocktails, efforts to evaluate and

license the rVSV/ΔG/GP EBOV vaccine should be increased.
Compared to the rAd vaccine platform, advantages of the
rVSV/ΔG/GP EBOV platform include limited pre-existing
immunity, the ability to administer it mucosally, the long
duration of immunity after one dose without booster
requirement, and its potential use as a postexposure
vaccination. With the Ebola outbreak slowing down, the
opportunity to obtain efficacy data through human trials may
decrease. In this case, the FDA animal rule should be used, in
which laboratory animal data is used to show efficacy, in order
to move vaccine candidates through the approval process and
start stockpiling the most promising candidate. This will ensure
that we have immediate immunization available to protect
frontline healthcare workers and contain the spread of a future
outbreak.
The 2014 outbreak highlights that Ebola virus disease in not

limited to central Africa and is a global problem that requires
global cooperation. The World Health Organization’s role in
the event of an outbreak should be to effectively coordinate
regional collaboration where data and expertise relevant to the
outbreak in addition to critical information about disease
surveillance is shared. Efforts to improve the infrastructure of
healthcare in African nations should be undertaken, such as
developing inexpensive systems to equip hospitals to be able to
manage routine healthcare needs as well as outbreaks.
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Educating the public is also equally important, as many
individuals in Ebola outbreak countries are fearful of modern
health care, preventing those who have come into contact with
the disease to seek health care and contributing to the spread of
the virus. Therefore, increased training of the local health care
force to build trust and effectively communicate with the public
in times of crisis is urgently required. Community engagement
is absolutely required, especially when preventive measures are
at odds with cultural beliefs and religious practices. Public
health education regarding the dynamics of Ebola transmission
is also urgently needed, especially with traditional burial
practices, which involve washing and touching of the deceased.
It is clear that our approaches in combatting Ebola virus disease
will engage many areas ranging from vaccine and therapeutic
discovery to improving the healthcare infrastructure, training,
and community participation.
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